
5 Firmware Design
Errors You're
Making Right Now

Uncover the firmware design mistakes that could
be holding you back and learn how to correct
them for a more successful embedded systems
project.

Avoiding
Costly

Mistakes

05

About Us

01

EmbeddedExpertIO stands as a premier source of tailored
embedded systems development courses, catering to
individuals and enterprises seeking to hone or acquire
embedded firmware programming expertise. Our extensive
course selections encompass beginner to advanced levels,
addressing diverse facets of embedded systems development,
such as WiFi, STM32 Bare-Metal, WiFi, Ethernet, GSM and
beyond.

 

Our core objective is to equip individuals and organizations
with the indispensable skills to thrive in the swiftly evolving
embedded systems sector. We achieve this by providing
immersive, hands-on education under the guidance of
seasoned industry specialists. Our ambition is to emerge as the
favored learning platform for embedded systems
development professionals across the globe.

3 4 A Fr i t hv i l l e G a rd e n s ,

Lo n d o n , W 1 2 7 J N

En g l a n d , Un i t e d K i n g d o m
e : s u p p o r t @ e m b e d d e d e x p e r t . i o
h tt p s : //e m b e d d e d e x p e r t . i o

https://embeddedexpert.io/#
https://embeddedexpert.io/

Introduction

02

Firmware design is a crucial aspect of embedded
systems development, as it dictates the overall system
behaviour and performance. However, in the race to
deliver products to market, engineers often make
common mistakes that can lead to costly delays or
product failures. In this article, we will discuss

 and provide insights
on how to avoid them to ensure a smooth and
successful embedded systems project.

five
prevalent firmware design errors

Inadequate System
Architecture Planning
The foundation of any successful firmware project is a well-
planned system architecture. An inadequate architecture can
lead to resource inefficiencies, performance bottlenecks, and
difficulties in scaling or updating the system in the future.

03

Clearly define the project requirements and
constraints, including processing power, memory, and
power consumption.

1

Consider the trade-offs between off-the-shelf
components and custom hardware.

2

Utilize modular design principles to enable easier
system updates and modifications.

3

Thoroughly evaluate the chosen
microcontroller and peripheral devices to
ensure compatibility and optimal
performance.

4

To avoid these issues, engineers should:

Insufficient
Error
Handling

04

Embedded systems often operate in
unpredictable environments and are expected
to handle various error conditions gracefully.
Neglecting proper error handling can lead to
system crashes or erratic behaviour.

 

Implement comprehensive error checking and
reporting mechanisms throughout the firmware.

Use a consistent error handling methodology, such as
returning error codes or employing exception
handling.

Regularly test the system against known and potential
error scenarios.

Employ fail-safe mechanisms, such as watchdog
timers, to protect against system lockups or
unresponsive peripherals.

1

2

3

4

To avoid these issues, engineers should:

05

Ignoring Code Reusability
and Maintainability
In the long run, code reusability and maintainability can
significantly impact project costs and timelines. Writing
firmware with these factors in mind can ease future updates
and facilitate collaboration.

 

Follow established coding standards and best
practices, such as proper indentation, meaningful
variable names, and modular functions.

Utilize version control systems to track changes and
collaborate effectively with team members.

1

2

To enhance code reusability and maintainability, engineers
should:

Overlooking Firmware
Security
As embedded systems increasingly connect to networks and
the internet, security concerns become paramount.
Overlooking firmware security can lead to vulnerabilities that
may be exploited by attackers, putting user data and system
integrity at risk.

 

06

Regularly review and update cryptographic libraries
and protocols.

1

Implement secure boot processes to prevent
unauthorized firmware modifications.

2

Incorporate hardware-based security features, such as
secure elements or trusted execution environments.

3

Employ abstraction layers to isolate hardware-specific
code, making it easier to port the firmware to new
hardware platforms.

4

To ensure firmware security, engineers should:

Create well-documented code with comments and
header files that provide clear explanations of function
and variable usage.

3

Regularly conduct security audits and penetration
testing to identify and mitigate potential
vulnerabilities.

4

07

Skipping Thorough
Testing and Validation
Rigorous testing and validation are essential to ensure
firmware reliability and performance. Skipping or rushing this
process can lead to undetected issues that manifest in the
field, requiring costly recalls or firmware updates.

Develop a comprehensive test plan that includes unit,
integration, and system-level tests.

Employ automated testing tools and continuous
integration pipelines to streamline testing processes.

Simulate various environmental conditions, including
temperature, humidity, and power supply variations.

Validate the firmware against industry-specific
standards and regulatory requirements.

1

2

3

4

To guarantee thorough testing and validation, engineers should:

08

Conclusion

By addressing these common firmware design mistakes,
engineers can minimize project risks, reduce development
costs, and ensure a higher quality product. Thorough planning
, meticulous attention to detail, and an emphasis on
maintainability, security, and testing will lead to a more
successful embedded systems project. As the industry
continues to evolve, staying vigilant and adaptable in your
firmware design approach will be essential to meet the
challenges and opportunities of tomorrow's embedded
systems landscape.

Remember, the key takeaways to avoid costly firmware
design mistakes are:

Thoroughly plan your system architecture to optimize
resource utilization and future scalability.

1

Implement robust error handling mechanisms to
ensure system stability and reliability.

2

09

By addressing these firmware design errors and implementing
the recommended best practices, you will not only enhance
the overall quality of your embedded systems project but also
gain a competitive edge in the fast-paced and ever-evolving
world of embedded systems development.

Commit to rigorous testing and validation processes
to guarantee firmware quality and compliance.

5

Prioritize code reusability and maintainability for
easier updates and collaboration.

3

Incorporate firmware security measures to protect
against potential threats and vulnerabilities.

4

